13C NMR SPECTRA OF CEPHALOSPORINS.l SIGNAL ASSIGNMENTS OF FREE ACIDS **AND ESTERS**

Kazuo **Tori,* Junko Nishikawa, and Yoshito Takeuchit**

Shionogi Research Laboratories, Shionogi & Co., Ltd., Fukushima-ku, Osaka, 553 Japan. TDepartment of Chemistry, College of General Education, The University of Tokyo, Komaba, Meguro-ku, Tokyo, 153 Japan

Abstract. 13C NMR signals were assigned for several cephalosporin free acids and esters as well as cephalosporinate ions using T1 measurements, selective NOE, and pDdependent chemical shifts to investigate the structure-reactivity relationship.

Much interest has been shown in the chemistry of cephalosporins in relation to their useful biological activities in recent years.² ¹³C and ¹⁵N chemical shifts have been regarded as **important indices in investigating the structure-activity relationship, and NMR signals were assigned for many cephalosporins, in particular, for cephalosporin sodium salts (a). 2-6 The polarization of the C-8 carbonyl group has frequently been discussed3 because the chemical reactivity of the B-lactam ring at the C-8-N-5 bond7 was shown to be closely correlated with the antibiotic activity.2'3 However, the chemical shifts (6) of C-8 and N-5 have been reported to be limited within a relatively narrow range. 3-6**

Recently, Paschal et a1.4 suggested the importance of the C-3=C-4 double bond polarization to the activity in cephalosporinate ions (a), observing that the chemical shift differences between C-3 and C-4 [Aô(4-3)] are large for cephalothin (5a) and cephaloridine (6a) which have **been great commercial successes. The discrimination of the C-3 and C-4 signals had been a con**troversial problem, $5,8,9$ which was solved by measuring the dipole-dipole relaxation times (T_1) in <u>5a</u> in D₂O: δ (T₁) values are 118.8 (1.79 s) and 133.9 (5.13 s) for C-3 and C-4, respectively.⁵ We have also confirmed this result for cefazolin sodium salt (3a) and 6a. ¹⁰ Therefore, **complete lH-decoupled 13 C spectra of cephalosporinate ions generally display the C-3 signal more intense than the C-4 signal owing to NOE differences arising from the C-2 and C-11 protons; 11,12 this fact is very useful for distinguishing between these two signals.**

On the other hand, little attention has been paid to the l3 C spectra of cephalosporin free acids (b) and esters (r), where the C-3 and C-4 signals have been assigned in analogy to sodium salts (a).^{13,14} However, during our studies of NMR spectra of cephalosporins, these signal assignments for (b) and (c) were found to be the reverse of those for (a) in view of their signal **intensities. We thus report here the unambiguous signal assignments of 7-aminodeacetoxy- (1)** and 7-aminocephalosporanic acids (4) , cephalexin (2) , 3 , 5 , and 6 in the three states (a) , (b) , **and (c), and discuss the AS(4-3) values in relation to the reactivity of the B-lactam ring.**

Most I3 C signals of the compound examined were easily assigned by using 1 H single-frequency and noise off-resonance decouplings, 1 H non-decoupling with NOE in the gated mode,5 and comparison of the chemical shifts with those of related compounds^{3-6,8,9} (see the TABLE). How**ever, some 13C signal assignments were not straightforward, particularly for C-3 and C-4 in (b) and (5). For example, the C-3 signal (6 122.8) is more intense than the C-4 signal (127.4) for**

Fig. 1. pD Dependence of chemical shifts in cephaloridine (6).

 $\frac{2a}{3}$ in D₂O, but comparison of the C-3 with the C-4 signal intensity for <u>2c</u> in CDC1₃ shows that **the signal at the lower field (6 131.6) is more intense than that at the higher field (122.5).**

Thus, we first measured the T₁ values and NOE factors for $2c$ and $4c$ by the usual inversion**recovery method and the gated-decoupling method, respectively. 11 As expected, the lower-field** signals between C-3 and C-4 had shorter T₁ values and larger NOE factors, and hence were **assigned to C-3 (see the TABLE). Next, we attempted to follow the pD dependence of 13 C chemical** shifts of the cephalosporins in D₂0 to confirm that some signals, particularly the C-3 and the **C-4 signal, mutually exchange their positions on going from an alkaline to an acidic solution,** but <u>1</u>-<u>5</u> were only soluble in D₂0 in limited pD ranges. Therefore, we measured the pD depend[.] **ence of the spectra of a betaine type of 5. Figure 1 shows plots of 6 against pD for five** carbons. As the pD value¹⁵ decreases to less than about 2, the C-3 and C-4 signals rapidly **approach each other. The strong pD dependence of these signals for 6 reasonably suggests that these signal positions may be reversed from state (a) to (b) of the usual cephalosporins.**

Confirmatory evidence for the assignments of the C-3 and C-4 signals in (b) was provided by the selective NOE measurement¹⁶ for 1<u>b</u> in D₂O-OCl; we observed the NOE enhancements of the $C-3$ (δ 144.0) and $C-4$ (122.6) signals by irradiating the CH₃ protons at C-3 selectively with a weak coherent-wave rf field¹⁶ using the gated-decoupling methods. Obviously, the C-3 signal **was enhanced by 1.2, while the C-4 signal was not.**

The data obtained are listed in the TABLE; the C-3 and C-4 signals for the other cases were assigned from the signal intensities. Discrimination of the C-8, C-10, and C-15 signals was frequently possible also from the signal intensities (see their T₁ values).

As shown in the TABLE also, the AS(4-3) **values for (b) and (5) are negative in almost all cases, whereas those for (a) are positive. However, the values apparently increase algebraical**ly on going from 1 to 6 in each type, though small solvent effects or pD effects were seen. The <code>difference in $\Delta\delta(4\text{-}3)$ between acid-form (b) and ester-form (c) was seen for 2. 17 </code>

Good linear relationships were found between the logarithms of the rate constants k_{OH} re-

a: ¹³C FT NMR spectra were recorded on a Varian NV-14 (at 15.087 MHz) and/or a JEOL FX-90Q (at 22.50 MHz) NMR spectrometer at ca. 30°C in 8- and/or 10-mm spinning tubes, respectively, in organic solvents with internal TMS reference (δ 0) and in D₂0 with internal dioxane reference (δ 67.4). Accuracies of δ , T_1 , and NOE factor are about ± 0.1 ppm, $\pm 10\%$, and $\pm 10\%$, respectively.
b: Not soluble in D₂0 at pD 3-6.5 and DMSO. c: Not soluble or decomposed in D₂0 at pD<3. d: Dissolved by adding an equimolar amount of NaHCO₃ to the free acids (pD 7.5-8.5). e: Dis-
solved by adding conc. DC1 (pD<1). f: Not soluble in CDCl₃. g: Sodium salts were dissolved in
D₂O or DMSO. h: These δ v reversed in each column. j: Assignments given here were based on the lanthanide-induced shifts $(\Delta\delta_{18}\ge\Delta\delta_{19})$ in Yb(fod)₃-assisted spectra of <u>2c</u> and <u>5c</u> in CDCl₃ and the assumption that C-18 has
a longer T_1 .¹¹

reported and $\Delta\delta(4-3)$ indices.

ported by Yamana and Tsuji' for the OH--catalyzed degradation -IO 0 10ppm **of cephalosporins 1-6 and the A6(4-3) values of (2) for the --** $R = H$ and $R = R_1R_2$ CHCO series (see Fig. 2). This is also the **case with acids (b> and esters (c). Thus, the A6(4-3) index should have a considerable significance in predicting the reactivity even at an intermediate ester stage during cephalosporin synthesis, at least for usual C-11-substituted cephalosporins. Recently, Boyd et a1.18 reported a parabolic relationship between antibacterial activity expressed in terms of minimum inhibitory concentration measured for 7(2-thienylacetyl)cephalosporins against five Gram-negative pathogenic microbes and the theoretical index of reactivity** IO 20 pm **called the transition state energy (TSE) calculated for a** COO⁻, \triangle 8(4-3) in D₂O (\bullet) model nucleophile, i.e., OH⁻ and a 3-cephem model structure **Fig.** 2. **Relationships of koH with a substituent X at C-3. We also successfully attempted** to **correlate** A6(4-3) **with -TSE almost linearly for each state**

(a), (b), and (c). This correlation might be extended to that with biological activities in **limited cases, but not for general cases, as pointed out frequently. 4,18**

Incidentally, a change in the C-7 amide group affected $\Delta\delta(4-3)$ only slightly³⁻⁶ except for **a** phthalimido group $[\Delta\delta(4-3) = -21.9$ ppm], ¹⁹ which might largely interact with the double bond. **A change in the C-4 ester group affects A6(4-3) slightly. Therefore, the ester group should be fixed when this index is used. Detailed substituent effects will be reported elsewhere.**

REFERENCES

- (1) **NMR Studies of penicillins and cephalosporins.** II. **For Part I, see K.Tori, T.Tsushima, Y.Tamura, H.Shigemoto, T.Tsuji, H.Ishitobi, and H.Tanida, Tetrahedron Lett. 3307 (1975).**
- (2) **E.H.Flynn, "Cephalosporins and Penicillins: Chemitry and Biology," Academic Press (1972); F.A.Jung, W.R.Pilgrim, J.P.Poyser, and P.J.Siret, 2. Antibiotic Chem. 4, 1 (1980).**
- **R.Mondelli and P.Ventura, <u>J.C.S. Perkin II</u> 1/49 (1977), and references therein.**
- (4 **J.W.Paschal, D.E.Dorman, P.R.Srinlvasan, and R.L.Lichter, 2. a. Chem. Al, 2013 (1978).**
- (5) J.-M.Dereppe, A.Schanck, B.Coene, C.Moreau, and M.Van Meerssche, <u>Org</u>. <u>Magn. Resonance II,</u> **638 (1978).**
- (6) A.Schanck, B.Coene, M.Van Meerssche, and J.-M.Dereppe, Ibid. 12, 337 (1979).
- **:;; T.Yamana and A.Tsuji, 2. Pharm. Sci. 65, 1563 (1976). -**
- **(8) N.Neuss, C.H.Nash, P.A.Lemke, and J.B.Grutzner, <u>J</u>. <u>Am</u>. <u>Chem. Soc. 93</u>, 233/ (1971).**
- (9) <u>Idem</u>., <u>Proc. Roy. Soc</u>. (<u>London) <u>B179</u>, 335 (1971).</u>
- Y.Takeuchi, the 43th Annual Meeting of the Chem. Soc. Jpn., Abstracts, II-1031 (1981). **A**
- **::y; F.W.Wehrli, Top. C-13 NMR Spectrosc. 2, 343 (1976), and references therein.**
- **(12)**
- **(13)** Y.Terui, K.Tori, S.Maeda, Y.K.Sawa, <u>Tetrahedron Lett</u>. 2853 (1975).
S.Kukolja, N.D.Jones, M.O.Chaney, T.K.Elzey, M.R.Gleissner, J.W.Paschal, and D.E.Dorman, <u>J</u>. Org. Chem. 40, 2388 (1975).
- **(14)** E.**M.Gordon, H.W.Chang, C.M.Cimarusti, B**.Toeplitz, and J.Z.Gougoutas, <u>J</u>. <u>Am</u>. <u>Chem</u>. <u>Soc</u> **lu, 1690 (1980).**
- **(15) i?_G.Bate, "Determination of pH," 2nd. ed., p. 375, Wiley & Sons (1973).**
- **(16) J.Uzawa and S.Takeuchi, Org. Magn. <u>Resonance 11</u>, 502 (1978).**
- **(17)** However, the Δδ(4-3) value for 1b in D₂O-DCl is larger (-21.4 ppm) owing to NH₃ at C-7, which affects all **δ** for the skeletal carbons. The Δδ(4-3) value of -6.4 ppm for <u>4b</u> in D₂O-DC1 was observed, although 4b decomposes rapidly under this condition.
- **(18) D.B.Boyd, D.K.Herron, W.H.W.Lunn, and W.A.Spitzer, J. Am. Chem. Sot. lQ2, 1812 (1980).**
- **(19)** The assignment originally reported¹³ was reversed (also, the C-3 and C-4 signals in a $\,$ cephalosporin where $R = PhOCH_2CO$, $X = H$, and $Y = CO_2CH_2C_6H_4-p-NO_2$, were misassigned).¹³